The InfoWorld SAN and NAS virtualization primer

How will storage virtualization technologies keep pace with storage requirements and maintain high service levels

How storage virtualization technologies allow you to keep pace with ever-increasing storage requirements while maintaining high availability and service levels

In just a few short years, storage virtualization, also known as block virtualization, has proven its worth in the large enterprise and traveled that well-worn path from pricey boutique solution to affordable commodity. As a standard feature in all but the most modest mid-tier storage systems, storage virtualization soothes a wide range of storage management woes for small and mid-size organizations. At the same time, dedicated solutions from top-tier vendors deliver the greatest ROI to large shops managing large SANs with intense data availability requirements.

Storage virtualization creates an abstraction layer between host and physical storage that masks the idiosyncrasies of individual storage devices. When implemented in a SAN, it provides a single management point for all block-level storage. To put it simply, storage virtualization pools physical storage from multiple, heterogeneous network storage devices and presents a set of virtual storage volumes for hosts to use.

[ Get the full scoop on doing storage virtualization right in the InfoWorld "Storage Virtualization Deep Dive" PDF special report. | Better manage your company's virtualization with our Virtualization Report newsletter. ]

In addition to creating storage pools composed of physical disks from different arrays, storage virtualization provides a wide range of services, delivered in a consistent way. These stretch from basic volume management, including LUN (logical unit number) masking, concatenation, and volume grouping and striping, to thin provisioning, automatic volume expansion, automated data migration, and data protection and disaster recovery functionality, including snapshots and mirroring.

In short, virtualization solutions can be used as a central control point for enforcing storage management policies and achieving higher SLAs.

Perhaps the most important service enabled by block-level virtualization is nondisruptive data migration. For large organizations, moving data is a near-constant fact of life. As old equipment comes off lease and new gear is brought online, storage virtualization enables the migration of block-level data from one device to another without an outage. Storage administrators are free to perform routine maintenance or replace aging arrays without interfering with applications and users, and production systems keep chugging along.

Virtualization can also help you achieve better storage utilization and faster provisioning. The laborious processes for provisioning LUNs and increasing capacity are greatly simplified -- even automated -- through virtualization. When provisioning takes 30 minutes instead of six hours and capacity can be reallocated almost on the fly, you can make much more efficient use of storage hardware. Some shops have increased their storage utilization from between 25 and 50 percent to more than 75 percent using storage virtualization technology.

Four architectural approaches In a virtualized SAN fabric, there are four ways to deliver storage virtualization services: in-band appliances, out of-band appliances, a hybrid approach called split path virtualization architecture, and controller-based virtualization. Regardless of architecture, all storage virtualization solutions must do three essential things: maintain a map of virtual disks and physical storage, as well as other configuration metadata; execute commands for configuration changes and storage management tasks; and transmit data between hosts and storage.

The four architectures differ in the way they handle these three separate paths or streams -- the metadata, control, and data paths -- in the I/O fabric. The differences hold implications for performance and scalability. An in-band appliance processes the metadata, control, and data path information all in a single device. In other words, the metadata management and control functions share the data path. This represents a potential bottleneck in a busy SAN, because all host requests must flow through a single control point.

In-band appliance vendors have addressed this potential scalability issue by adding advanced clustering and caching capabilities to their products. Many of these vendors can point to large enterprise SAN deployments that showcase their solution's scalability and performance. Examples of the in-band approach include DataCore SANsymphony, FalconStor IPStor, and IBM SAN Volume Controller.

An out-of-band appliance pulls the metadata management and control operations out of the data path, offloading these to a separate compute engine. The hitch is that software agents must be installed on each host. The job of the agent is to pluck the metadata and control requests from the data stream and forward them to the out-of-band appliance for processing, freeing the host to focus exclusively on transferring data to and from storage. The sole provider of an out-of-band appliance is LSI Logic, whose StoreAge product can be adapted to both out-of-band or split path usage.

A split path system leverages the port-level processing capabilities of an intelligent switch to offload the metadata and control information from the data path. Unlike an out-of-band appliance, in which the paths are split at the host, split-path systems split the data and the control paths in the network at the intelligent device. Split-path systems forward the metadata and control information to an out-of-band compute engine for processing and pass the data path information on to the storage device. Thus, split-path systems eliminate the need for host-level agents. Typically, split-path virtualization software will run in an intelligent switch or a purpose built appliance. Providers of split path virtualization controllers are EMC (Invista), Incipient, and LSI Logic (StoreAge SVM).

Array controllers have been the most common layer where virtualization services have been deployed. However, controllers typically have virtualized only the physical disks internal to the storage system. This is changing, though. A twist on the old approach is to deploy the virtualization intelligence on a controller that can virtualize both internal and external storage. Like the in-band appliance approach, the controller processes all three paths: data, control, and metadata. The primary example of this new style of controller-based virtualization is the Hitachi Universal Storage Platform.

Read more about how to deploy storage virtualization in InfoWorld's free PDF report, "Storage Virtualization Deep Dive," including:

  • File virtualization
  • Three architectual approaches

This article, "The InfoWorld SAN and NAS virtualization primer," was originally published at InfoWorld.com. Follow the latest developments in virtualization at InfoWorld.com.

Read more about virtualization in InfoWorld's Virtualization Channel.

This story, "The InfoWorld SAN and NAS virtualization primer" was originally published by InfoWorld.

Insider Tip: 12 easy ways to tune your Wi-Fi network
Join the discussion
Be the first to comment on this article. Our Commenting Policies