The world's 23 toughest math questions

DARPA's math challenges

By Layer 8 on Mon, 09/29/08 - 9:10pm.

It sounds like a math phobic's worst nightmare or perhaps Good Will Hunting for the ages.

Those wacky folks at he the Defense Advanced Research Projects Agency have put out a research request it calls Mathematical Challenges, that has the mighty goal of "dramatically revolutionizing mathematics and thereby strengthening DoD's scientific and technological capabilities."

The challenges are in fact 23 questions that if answered, would offer a high potential for major mathematical breakthroughs, DARPA said. So if you have ever wanted to settle the Riemann Hypothesis, which I won't begin to describe but it is one of the great unanswered questions in math history, experts say. Or perhaps you've always had a theory about Dark Energy, which in a nutshell holds that the universe is ever-expanding, this may be your calling.

DARPA perhaps obviously states research grants will be awarded individually but doesn't say how much they'd be worth. The agency does say you'd need to submit your research plan by Sept. 29, 2009.

So if you're game, take your pick of the following questions and have at it.

  • The Mathematics of the Brain: Develop a mathematical theory to build a functional model of the brain that is mathematically consistent and predictive rather than merely biologically inspired.
  • The Dynamics of Networks: Develop the high-dimensional mathematics needed to accurately model and predict behavior in large-scale distributed networks that evolve over time occurring in communication, biology and the social sciences.
  • Capture and Harness Stochasticity in Nature: Address Mumford's call for new mathematics for the 21st century. Develop methods that capture persistence in stochastic environments.
  • 21st Century Fluids: Classical fluid dynamics and the Navier-Stokes Equation were extraordinarily successful in obtaining quantitative understanding of shock waves, turbulence and solitons, but new methods are needed to tackle complex fluids such as foams, suspensions, gels and liquid crystals.
  • Biological Quantum Field Theory: Quantum and statistical methods have had great success modeling virus evolution. Can such techniques be used to model more complex systems such as bacteria? Can these techniques be used to control pathogen evolution?
  • Computational Duality: Duality in mathematics has been a profound tool for theoretical understanding. Can it be extended to develop principled computational techniques where duality and geometry are the basis for novel algorithms?
  • Occam's Razor in Many Dimensions: As data collection increases can we "do more with less" by finding lower bounds for sensing complexity in systems? This is related to questions about entropy maximization algorithms.
  • Beyond Convex Optimization: Can linear algebra be replaced by algebraic geometry in a systematic way?
  • What are the Physical Consequences of Perelman's Proof of Thurston's Geometrization Theorem?: Can profound theoretical advances in understanding three dimensions be applied to construct and manipulate structures across scales to fabricate novel materials?
  • Algorithmic Origami and Biology: Build a stronger mathematical theory for isometric and rigid embedding that can give insight into protein folding.
  • Optimal Nanostructures: Develop new mathematics for constructing optimal globally symmetric structures by following simple local rules via the process of nanoscale self-assembly.
  • The Mathematics of Quantum Computing, Algorithms, and Entanglement: In the last century we learned how quantum phenomena shape our world. In the coming century we need to develop the mathematics required to control the quantum world.
  • Creating a Game Theory that Scales: What new scalable mathematics is needed to replace the traditional Partial Differential Equations (PDE) approach to differential games?
  • An Information Theory for Virus Evolution: Can Shannon's theory shed light on this fundamental area of biology?
  • The Geometry of Genome Space: What notion of distance is needed to incorporate biological utility?
  • What are the Symmetries and Action Principles for Biology?: Extend our understanding of symmetries and action principles in biology along the lines of classical thermodynamics, to include important biological concepts such as robustness, modularity, evolvability and variability.
  • Geometric Langlands and Quantum Physics: How does the Langlands program, which originated in number theory and representation theory, explain the fundamental symmetries of physics? And vice versa?
  • Arithmetic Langlands, Topology, and Geometry: What is the role of homotopy theory in the classical, geometric, and quantum Langlands programs?
  • Settle the Riemann Hypothesis: The Holy Grail of number theory.
  • Computation at Scale: How can we develop asymptotics for a world with massively many degrees of freedom?
  • Settle the Hodge Conjecture: This conjecture in algebraic geometry is a metaphor for transforming transcendental computations into algebraic ones.
  • Settle the Smooth Poincare Conjecture in Dimension 4: What are the implications for space-time and cosmology? And might the answer unlock the secret of "dark energy"?
  • What are the Fundamental Laws of Biology?: This question will remain front and center for the next 100 years. DARPA places this challenge last as finding these laws will undoubtedly require the mathematics developed in answering several of the questions listed above.


Layer 8 in a box

Check out these other hot stories:

Feds unwrap $15M for financial, retail company energy reduction

Report spanks cyber-security at Los Alamos National Lab (again)

Researchers look to root out those annoying Wi-Fi dead zones

NASA unleashes rubber ducks to battle global warming

Deficit remains but US exports $214B worth of high-tech goods in 2007

Robot fights set to smack-down in Texas

NASA banging, freezing next generation space telescope into shape

GAO report torches US for dumping electric waste in foreign countries

FTC wants to clamp down on prepaid phone card deception

About Layer 8
Layer 8 is written by Michael Cooney, an online news editor with Network World
Archives
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
Categories
AIM
BlackBerry
British Airways
Cisco
E-commerce
FBI
FCC
FCC’s Video Relay Service (VRS)
FTC
GAO
General discussions
IBM
IP routing
IRIS
India
Intelsat
LANs / WANs
Lance Atkinson
NSF
Security
Software
Wireless / Mobile
car
civilian airspace
cybersecurity
drones
faa
federal security
fraud
jet engine
language translation
math problems
network security
open source
rocket car
smartphone
spammer
spear phishing
supercomputers
typhoon
unmanned aircraft
us
web glitch