Skip Links

25 of today's coolest network and computing research projects

Latest concoctions from university labs include language learning website, a newfangled Internet for mobile devices and even IP over xylophones

By , Network World
September 06, 2012 12:29 PM ET

Network World - University labs, fueled with millions of dollars in funding and some of the biggest brains around, are bursting with new research into computer and networking technologies.

ALPHADOGGS: Follow our network research blog and Facebook page 

Wireless networks, computer security and a general focus on shrinking things and making them faster are among the hottest areas, with some advances already making their way into the market. Here's a roundup of 25 such projects that caught our eyes:


This free website, Duolingo, from a pair of Carnegie Mellon University computer scientists serves double duty: It helps people learn new languages while also translating the text on Web pages into different languages.

CMU's Luis von Ahn and Severin Hacker have attracted more than 100,000 people in a beta test of the system, which initially offered free language lessons in English, Spanish, French and German, with the computer offering advice and guidance on unknown words. Using the system could go a long way toward translating the Web, many of whose pages are unreadable by those whose language skills are narrow.

Von Ahn is a veteran of such crowdsourcing technologies, having created online reCAPTCHA puzzles to cut down on spam while simultaneously digitizing old books and periodicals. Von Ahn's spinoff company, reCAPTCHA, was acquired by Google in 2009. Duolingo, spun off in November to offer commercial and free translation services, received $3.3 million in funding from Union Square Ventures, actor Ashton Kutcher and others.


Princeton researchers

Princeton University Computer Science researchers envision an Internet that is more flexible for data center operators and more useful to mobile users. Princeton's open source Serval system is what Assistant Professor of Computer Science Michael Freedman calls a Service Access Layer that sits between the IP Network Layer (Layer 3) and Transport Layer (Layer 4), where it can work with unmodified network devices. Serval's purpose is to make Web services such as Gmail and Facebook more easily accessible, regardless of where an end user is, via a services naming scheme that augments what the researchers call an IP address set-up "designed for communication between fixed hosts with topology-dependent addresses." Data center operators could benefit by running Web servers in virtual machines across the cloud and rely less on traditional load balancers.

Serval, which Freedman describes as a "replacement" technology, will likely have its first production applications in service-provider networks. "Its largest benefits come from more dynamic settings, so its features most clearly benefit the cloud and mobile spaces," he says.

If any of this sounds similar to software-defined networking (SDN), there are in fact connections. Freedman worked on an SDN/OpenFlow project at Stanford University called Ethane that was spun out into a startup called Nicira for which VMware recently plunked down $1.26 billion.

WiFi routers to the rescue

Researchers at Germany's Technical University in Darmstadt have described a way for home Wi-Fi routers to form a backup mesh network to be used by the police, firefighters and other emergency personnel in the case of a disaster or other incident that wipes out standard cell and phone systems.

The proliferation of Wi-Fi routers makes the researchers confident that a dense enough ad hoc network could be created, but they noted that a lack of unsecured routers would require municipalities to work with citizens to allow for the devices to be easily switched into emergency mode. The big question is whether enough citizens would really allow such access, even if security was assured.

Hyperspeed signaling

University of Tulsa engineers want to slow everything down, for just a few milliseconds, to help network administrations avoid cyberattacks.

By slowing traffic, the researchers figure more malware can be detected and then headed off via an algorithm that signals at hyperspeed to set up defenses. Though researcher Sujeet Shenoi told the publication New Scientist that it might not be cheap to set up such a defense system, between the caching system and reserved data pipes needed to support the signals.


University of Washington

University of Washington researchers have created a card game called Control-Alt-Hack that's designed to introduce computer science students to security topics.

The game, funded in part by Intel Labs and the National Science Foundation, made its debut at the Black Hat security conference in Las Vegas over the summer. The tabletop game involves three to six players working for an outfit dubbed Hackers, Inc., that conducts security audits and consulting, and players are issued challenges, such as hacking a hotel mini bar payment system or wireless medical implant, or converting a robotic vacuum cleaner into a toy. The game features cards (including descriptions of well-rounded hackers who rock climb, ride motorcycles and do more than sit at their computers), dice, mission cards, "hacker cred tokens" and other pieces, and is designed for players ages 14 and up. It takes about an hour to play a game. No computer security degree needed.

"We went out of our way to incorporate humor," said co-creator Tamara Denning, a UW doctoral student in computer science and engineering, referring to the hacker descriptions and challenges on the cards. "We wanted it to be based in reality, but more importantly we want it to be fun for the players."

Ghost-USB-Honeypot project

This effort, focused on nixing malware like Flame that spreads from computer to computer via USB storage drives, got its start based on research from Sebastian Poeplau at Bonn University's Institute of Computer Science. Now it's being overseen by the broader Honeynet Project.

The breakthrough by Poeplau and colleagues was to create a virtual drive that runs inside a USB drive to snag malware. According to the project website: "Basically, the honeypot emulates a USB storage device. If your machine is infected by malware that uses such devices for propagation, the honeypot will trick it into infecting the emulated device."

One catch: the security technology only works on Windows XP 32 bit, for starters.

Our Commenting Policies
Latest News
rssRss Feed
View more Latest News