Skip Links

Practical advice about disaster recovery planning

Yes, it is possible to contain catastrophes, but with how much pain and at what cost?

By Jeff Klaus, Intel Corporation, special to Network World
May 20, 2013 02:32 PM ET

Page 2 of 3

On a day-to-day basis, the monitoring puts data center managers in a more proactive stance. Early identification of hot spots, before they reach critical levels, can minimize negative impacts on equipment and user services, and enable preventative measures to be taken. As an added benefit, the visibility of power and temperature can help identify hardware that is consuming too much energy; energy consumption can be improved during nominal operation with refreshes of these systems.

The same solutions that provide visibility can also introduce better control of power. Control of power can avoid outages -- by bringing down temperatures -- and can enable the allocation of power to mission-critical systems during an outage. As part of a DR solution, controlling power is key for avoiding duplication of non-essential systems in a co-lo facility and getting the best use out of the available systems.

A crude method for controlling power is to simply cap the power consumption to the high-priority servers and related CRAH equipment to stay within restricted power levels during any crisis. Since performance is directly related to power levels, a more intelligent energy management solution lets IT dynamically balance power and performance.

The best energy management solutions enable this balanced control with a combination of accurate continuous monitoring of actual power consumption, and the ability to dynamically adjust CPU operating frequencies. The solutions interact with the operating system or hypervisor based on threshold alerts, and ultimately minimize the impacts of power restrictions on applications and end users.

* Better disaster outcomes. Power capping and throttling can maximize the availability of the high-priority business applications and conversely allows IT to temporarily disable or lower performance of non-critical servers during power-conserving mode. Carrying out these controls in response to a natural disaster minimizes the impacts on end users and critical applications.

* Capacity management. The same power management solutions that enable balancing power and performance also maximize outcomes in other ways. By giving data center architects insight about power requirements, these solutions help them calculate and configure rack densities that will stay within the lower power envelopes in effect during times of outages. These adjustments can boost efficiencies during outages and help extend the life of UPSs by up to 25% during power outages, as measured during proof-of-concept testing of power management solutions in data centers.

The biggest payback

The cost of downtime can be a sufficient justification for some companies to invest in the latest holistic energy management solutions. However, it is often the other benefits from these systems that provide the biggest impetus. This is because the best-in-class energy management solutions drive up energy savings every day -- not just during times of disasters.

In fact, it's been observed in real-world cases that intelligent energy management solutions can reduce energy waste by 20% to 40%. It is a conservative assumption, based on observations that approximately 10% to 15% of all data center servers are idle. Since a typical server draws about 400 watts of power, the annual energy cost is $800 or more per server. Reducing this type of waste extends operation during times of restricted power, and yields significant ongoing reductions in operating cost.

Our Commenting Policies
Latest News
rssRss Feed
View more Latest News