New, faster wireless network to be built

Synthesizing cells at the exact physical location of the mobile device could improve spectral efficiency and revolutionize mobile networks, if it works.

pcell lead image

As recently as a week ago, in a February 17th, 2015, Financial Times newspaper article, investor analysts were speculating as to just what U.S. satellite TV company Dish was going to do with its massive hoard of unused, cached mobile-suitable spectrum that it's been accumulating over the years.

Well, we might have just learned the answer. Artemis Networks, a wireless startup, has reached a deal to lease some of that spectrum, for a while, in San Francisco. It wants to use it to experiment with its unusual pCell technology.

Faster network

Proprietary technology, pCell, is a unique idea that, if it works, could go head-to-head with Mobile Network Operators' existing LTE service.

Artemis says its service will be much faster and will obtain spectral efficiency gains due to the way it manipulates signals.

Artemis's arbitrarily located, multiple antenna cells are only a few centimeters across, the company says.

Synthesizing cells at the exact location of the device

Artemis says that its system isn't prone to the variable data rates of classic cellular because it synthesizes the cell at the exact location of each user's mobile device. That reduces SINR, or Signal to Interference plus Noise Ratio—something that slows phones.


The key to pCell is that its base stations actively drop in and out of the device's range as the user moves, or RF conditions change. The data center uses soundings from each mobile device and each pCell antenna to create the cell.

The pCell uses certain wireless propagation effects, such as space selectivity, RF interference, 3D space (rather than classic 2D), and zones that deliberately interfere with each other, overlapping in space frequency and time.

Most of these elements are unlike conventional cellular, which generally aims to do the opposite of what pCell wants to do.

Exploiting interference

This system increases data capacity of existing spectrum by combining radio signals, which are managed by computers. Micro-cells throw radio bandwidth into an area via large numbers of antennas, and then the computers off-site sort the resulting mess out. The subscriber's mobile device, thus, obtains a clean signal.

It takes advantage of small cells. Conventional wireless hasn't, thus far, used this kind of small-cell technique, primarily because large numbers of antennas, all tightly packed close to each other, have historically created interference, which slows down data.

Small cells

Small cells are a good idea, though. One of the problems with large-cell conventional systems is that, by design, data throughputs decline the further the user is from the antenna, and large numbers of users share the same antenna, which also results in slowdowns for everyone.

Another issue with small cells has been that handoffs can be inefficient.

However, as time goes by, and algorithms get ever more convoluted, these small-cell problems can begin to be corrected, engineers hope. It is, in fact, an important concept in future 5G ideas.

Artemis says its system isn't affected by interference—the algorithms fix it. And in fact, the company says it exploits the interference by combining the signals, thus creating more bandwidth for the end device.


Another benefit of using a larger number of antennas is better geo-location positioning indoors. Artemis says the technology is compatible with existing, unmodified 4G LTE and Wi-Fi mobile devices, with a replacement SIM card.


Thus far, the system has been tested in a regular grid with 2.5-meter spacing, although theoretically the antennas could be placed arbitrarily.

Scalable capacity

And that's what Artemis wants the Dish spectrum for - to run a remote radio-head and hub system in Levi's Stadium, which is home of the San Francisco 49ers football team. Theoretically, pCell should scale with large numbers of users.

And with a base seating capacity of 68,500 that should be enough Wrestlemania fans, and indeed 2016 Super Bowl fans, using social networking and media to determine whether we have a new radio architecture on our hands.


Copyright © 2015 IDG Communications, Inc.

The 10 most powerful companies in enterprise networking 2022