Americas

  • United States

Intel decides two cores are better than one

News
May 07, 20045 mins
Computers and PeripheralsData Center

Intel’s decision to scrap its single-core processor road map in favor of chips with two cores will help the company improve the performance of its future chips without having to rely on a power-centric design, analysts said Friday.

Intel’s decision to scrap its single-core processor road map in favor of chips with two cores will help the company improve the performance of its future chips without having to rely on a power-centric design, analysts said Friday.

Two future processors were eliminated from Intel’s product plans on Friday. Tejas, once the future of the Pentium 4, and Jayhawk, a planned successor to the Xeon server processor, have been dropped, an Intel spokesman said. Instead, Intel plans to roll out dual-core designs across all of its server, desktop and mobile processor lines by the end of 2005.

Dual-core processors are just what the name implies: two processor cores on a single die. Chip designers have been gravitating toward this design because it allows them to use two lower-power cores to improve performance rather than depending on a high-frequency single core.

Nathan Brookwood, principal analyst with Insight 64 in Saratoga, Calif., drew an automotive analogy for the shift to dual-core processors.

“This is a shift from a one-cylinder engine to a two-cylinder engine. It runs smoother, it gets better mileage, and you can use two smaller cylinders instead of one huge cylinder,” Brookwood said.

IBM and Sun have each released dual-core chips for high-end servers. Intel has also announced plans to bring dual-core chips to its Itanium server processor family.

The dual-core design allows Intel to handle a power-consumption problem that was coming to a head with the February release of the Prescott Pentium 4, the company’s first chip built on a 90 nanometer process generation. Power consumption is of paramount concern to chip designers as circuits shrink to the point where power can leak out of those circuits as heat.

In almost every other transition between process generations, Intel has been able to follow a simple plan for managing frequency and power consumption, said Kevin Krewell, editor in chief of The Microprocessor Report, in San Jose, Calif.

The company would steadily increase the frequency of its older chips to the limit imposed by the older process generation. Once the new process generation was ready, Intel would introduce new chips that run at even higher frequencies but with lower power consumption due to the benefits of the new process technology, he said.

However, Prescott actually consumed more power at the same frequency of its Northwood predecessor. This was due in part to new instructions and additional cache, but analysts also feel that power leakage is worse than expected at the 90 nanometer process generation.

Each core on a dual-core processor can run at a lower frequency, and therefore consume less power, while still delivering better performance than a higher frequency processor with a single core, Krewell said.

Intel’s President and COO Paul Otellini told analysts last year that the Pentium 4 would hit 4GHz by the end of 2004, but Prescott’s power consumption indicates that scaling beyond that frequency would be extremely difficult, Krewell said.

Intel plans to eventually base its server, desktop and mobile processors on the Banias architecture currently in the Pentium M processor, but the company will keep the current Netburst architecture for the first dual-core versions of both the Xeon and Pentium 4 processors, multiple sources familiar with Intel’s plans indicated Friday.

Intel will likely bow to the needs of its server customers for stable migration patterns, to allow for the extra testing and validation required of server products. Springing a new architecture and a new dual-core design on the server vendors is probably too much to ask, the sources said.

Chips based on the Banias architecture are smaller and consume much less power than ones based on the Netburst architecture. Intel is expected to standardize its chips on a variant of the Banias architecture some time in 2006.

While the power benefits of dual-core chips are apparent, their performance depends on the availability of software that can take advantage of the independent cores, said Gordon Haff, principal analyst with Illuminata Inc. in Nashua, New Hampshire.

Desktop applications have traditionally been single-threaded, Haff said. A software thread is a stream of instructions that can run independently of other instruction streams.

The advantage of a dual-core processor is that it can run a multithreaded application much faster than a single core processor because independent software threads can be processed at the same time, Haff said. But a single-core processor running a single-threaded application will almost always be faster than a dual-core processor running a single-threaded application, he said.

Intel has already helped the development of multithreaded applications with hyperthreading, its technology for allowing desktop and server processors to take advantage of unused execution units in those processors by making the operating system think the computer has two separate processors.

Hyperthreading basically created a virtual dual-processor system, Krewell said. Multithreaded operating systems such as Microsoft’s Windows XP and the current version of the Linux kernel can take advantage of the technology to allow PCs to simultaneously run two different tasks in a more efficient manner, he said.

More and more multithreaded applications are under development, and users that are running multiple single-threaded applications simultaneously will also see a performance benefit from dual-core chips, Haff said.

The move to dual-core chips will also allow Intel to play to its historical strength in manufacturing, said Dean McCarron, principal analyst with Mercury Research in Cave Creek, Ariz. Dual-core designs require chip makers to place a huge amount of transistors on a single chip, and Intel might be able to out-build the competition in this area with its enormous manufacturing resources, he said.

Intel rival Advanced Micro Devices has received a great deal of attention for its Opteron server processor over the last year, but the company declined to share details about its strategies for dual-core processors.