Unix turns 40: The past, present and future of the OS

Forty years ago this summer, a programmer sat down and knocked out in one month what would become one of the most important pieces of software ever created.

In August 1969, Ken Thompson, a programmer at AT&T Bell Laboratories, saw the monthlong absence of his wife and young son as an opportunity to put his ideas for a new operating system into practice. He wrote the first version of Unix in assembly language for a wimpy Digital Equipment Corp. PDP-7 minicomputer, spending one week each on the operating system, a shell, an editor and an assembler.

Thompson and a colleague, Dennis Ritchie , had been feeling adrift since Bell Labs had withdrawn earlier in the year from a troubled project to develop a time-sharing system called Multics, short for Multiplexed Information and Computing Service. They had no desire to stick with any of the batch operating systems that predominated at the time, nor did they want to reinvent Multics, which they saw as grotesque and unwieldy.

After batting around some ideas for a new system, Thompson wrote the first version of Unix, which the pair would continue to develop over the next several years with the help of colleagues Doug McIlroy, Joe Ossanna and Rudd Canaday. Some of the principles of Multics were carried over into their new operating system, but the beauty of Unix then (if not now) lay in its "less is more" philosophy.

"A powerful operating system for interactive use need not be expensive either in equipment or in human effort," Ritchie and Thompson would write five years later in the Communications of the ACM (CACM), the journal of the Association for Computing Machinery. "[We hope that] users of Unix will find that the most important characteristics of the system are its simplicity, elegance, and ease of use."

So What Is 'Unix,' Anyway?

Unix, most people would say, is an operating system written decades ago at AT&T's Bell Labs, and its descendents. Today's major versions of Unix branched off a tree with two trunks: one emanating directly from AT&T and one from AT&T via the University of California, Berkeley. The stoutest branches today are AIX from IBM, HP-UX from Hewlett-Packard and Solaris from Sun Microsystems.

However, The Open Group, which owns the Unix trademark, defines Unix as any operating system it has certified as conforming to the Single Unix Specification (SUS). This includes operating systems that are usually not thought of as Unix, such as Mac OS X Leopard (which descended from BSD Unix) and IBM's z/OS (which descended from the mainframe operating system MVS), because they conform to the SUS and support SUS APIs. The basic idea is that it is Unix if it acts like Unix, regardless of the underlying code.

A still broader definition of Unix would include Unix-like operating systems -- sometimes called Unix "clones" or "look-alikes" -- that copied many ideas from Unix but didn't directly incorporate code from Unix. The leading one of these is Linux.

Finally, although it's reasonable to call Unix an "operating system," as a practical matter it is more. In addition to an OS kernel, Unix implementations typically include utilities such as command-line editors, APIs, development environments, libraries and documentation.

Apparently, they did. Unix would go on to become a cornerstone of IT, widely deployed to run servers and workstations in universities, government facilities and corporations. And its influence spread even further than its actual deployments, as the ACM noted in 1983 when it gave Thompson and Ritchie its top prize, the A.M. Turing Award for contributions to IT: "The model of the Unix system has led a generation of software designers to new ways of thinking about programming."

Of course, Unix's success didn't happen all at once. In 1971, it was ported to the PDP-11 minicomputer, a more powerful platform than the PDP-7. Text-formatting and text-editing programs were added, and it was rolled out to a few typists in the Bell Labs patent department, its first users outside the development team.

In 1972, Ritchie wrote the high-level C programming language (based on Thompson's earlier B language); subsequently, Thompson rewrote Unix in C, greatly increasing the operating system's portability across computing environments. Along the way, it picked up the name Unics (Uniplexed Information and Computing Service), a play on Multics; the spelling soon morphed into Unix.

It was time to spread the word. Ritchie and Thompson's July 1974 CACM article, "The UNIX Time-Sharing System," took the IT world by storm. Until then, Unix had been confined to a handful of users at Bell Labs. But now, with the Association for Computing Machinery behind it -- an editor called it "elegant" -- Unix was at a tipping point.

"The CACM article had a dramatic impact," IT historian Peter Salus wrote in his book The Daemon, the Gnu and the Penguin (Reed Media Services, 2008). "Soon, Ken was awash in requests for Unix."

Hackers' Heaven

Thompson and Ritchie were consummate "hackers," when that word referred to someone who combined creativity, brute-force intelligence and midnight oil to solve software problems that others barely knew existed.

Their approach, and the code they wrote, greatly appealed to programmers at universities, and later at start-up companies without the megabudgets of an IBM, a Hewlett-Packard or a Microsoft. Unix was all that other hackers, such as Bill Joy at the University of California, Berkeley, Rick Rashid at Carnegie Mellon University and David Korn later at Bell Labs, could wish for.

"Nearly from the start, the system was able to, and did, maintain itself," wrote Thompson and Ritchie in the CACM article. "Since all source programs were always available and easily modified online, we were willing to revise and rewrite the system and its software when new ideas were invented, discovered, or suggested by others."

Korn, an AT&T Fellow today, worked as a programmer at Bell Labs in the 1970s. "One of the hallmarks of Unix was that tools could be written, and better tools could replace them," he recalls. "It wasn't some monolith where you had to buy into everything; you could actually develop better versions." He developed the influential Korn shell, essentially a programming language to direct Unix operations that's now available as open-source software.

Author and technology historian Salus recalls his work with the programming language APL on an IBM System/360 mainframe as a professor at the University of Toronto in the 1970s. It was not going well. But on the day after Christmas in 1978, a friend at Columbia University gave him a demonstration of Unix running on a minicomputer. "I said, 'Oh my God,' and I was an absolute convert," says Salus.

Users: Unix Has a Healthy Future

If you're among those predicting the imminent demise of Unix, you might want to reconsider. Computerworld's 2009 Unix survey of IT executives and managers, conducted online in March and April, tells a different story: While demand appears to be down from our 2003 survey on Unix use, the operating system is clearly still going strong.

Of the 211 respondents, 130 (62%) reported using Unix in their organizations. Of the 130 respondents whose companies use Unix, 69% indicated that their organizations are "extremely reliant" or "very reliant" on Unix, with another 21% portraying their organizations as "somewhat reliant" on Unix.

Why are IT shops still so reliant on Unix? Applications and reliability/scalability (64% and 51%, respectively) were the main reasons cited by respondents. Other reasons included cost considerations, hardware vendors, ease of application integration/development, interoperability, uptime and security.

AIX was the most commonly reported flavor of Unix used by the survey base (42%), followed by Solaris/Sparc (39%), HP-UX (25%) and Solaris/x86 (22%), "other Unix flavors/versions" (19%), Mac OS X Server (12%) and OpenSolaris (10%). Of the 19% who selected other Unix flavors, most said they used some kind of Linux.

Almost half of the respondents (47%) predicted that in five years, Unix will still be "an essential operating system with continued widespread deployment." Just 5% envisioned it fading away. Of those who said they were planning on migrating away from Unix, cost was the No. 1 reason, followed by server consolidation and a skills shortage.

Which of the following best describes your Unix strategy?

* Unix is an essential platform for us and will remain so indefinitely: 42%

* Unix's role in our enterprise will shrink, but it won't disappear: 18%

* We are increasing our use of Unix: 15%

* We expect to migrate away from Unix in the future: 12%

* None of the above: 8%

* We have already implemented a plan to migrate away from Unix: 5%

* Other: 2%

Which of the following best describes your vision of where Unix will be in five years?

* It will be an essential operating system with continued widespread deployment: 47%

* It will be important in some vertical market sectors, but it will not be considered an essential operating environment for most companies: 35%

* It will generally be seen as a legacy system warranting a non-Unix migration path: 11%

* Unix, as well as other operating systems, will fade in importance as we go to hosted (cloud, software-as-service, etc.) systems: 5%

* None of the above: 2%

* Other: 1%

Base: 130 IT managers who said their companies use Unix. Percentages do not add up to 100 because of rounding.

Source: Computerworld 2009 Unix Survey

He says the key advantage of Unix for him was its "pipe" feature, introduced in 1973, which made it easy to pass the output of one program to another. The pipeline concept, invented by Bell Labs' McIlroy, was subsequently copied by many operating systems, including all the Unix variants, Linux, DOS and Windows.

Another advantage of Unix -- the second "wow," as Salus puts it -- was that it didn't have to be run on a million-dollar mainframe. It was written for the tiny and primitive DEC PDP-7 minicomputer because that's all Thompson and Ritchie could get their hands on in 1969. "The PDP-7 was almost incapable of anything," Salus recalls. "I was hooked." Unix Offspring

A lot of others got hooked as well. University researchers adopted Unix in droves because it was relatively simple and easily modified, it was undemanding in its resource requirements, and the source code was essentially free. Start-ups like Sun Microsystems Inc. and a host of now-defunct companies that specialized in scientific computing, such as Multiflow Computer, made it their operating system of choice for the same reasons.

Unix grew up as a nonproprietary system because in 1956, AT&T had been enjoined by a federal consent decree from straying from its mission to provide telephone service. It was OK to develop software, and even to license it for a "reasonable" fee, but the company was barred from getting into the computer business.

Unix, which was developed with no encouragement from management, was first viewed at AT&T as something between a curiosity and a legal headache.

Then, in the late 1970s, AT&T realized it had something of commercial importance on its hands. Its lawyers began adopting a more favorable interpretation of the 1956 consent decree as they looked for ways to protect Unix as a trade secret. Beginning in 1979, with the release of Version 7, Unix licenses prohibited universities from using the Unix source code for study in their courses.

No problem, said computer science professor Andrew Tanenbaum, who had been using Unix v6 at Vrije Universiteit in Amsterdam. In 1987, he wrote a Unix clone for use in his classrooms, creating the open-source Minix operating system to run on the Intel 80286 microprocessor.

"Minix incorporated all the ideas of Unix, and it was a brilliant job," Salus says. "Only a major programmer, someone who deeply understood the internals of an operating system, could do that." Minix would become the starting point for Linus Torvalds' 1991 creation of Linux -- if not exactly a Unix clone, certainly a Unix look-alike.

Stepping back a decade or so, Bill Joy, who was a graduate student and programmer at UC Berkeley in the '70s, got his hands on a copy of Unix from Bell Labs, and he saw it as a good platform for his own work on a Pascal compiler and text editor.

Modifications and extensions that he and others at Berkeley made resulted in the second major branch of Unix, called Berkeley Software Distribution (BSD) Unix. In March 1978, Joy sent out copies of 1BSD priced at $50.

So by 1980, there were two major lines of Unix -- one from Berkeley and one from AT&T -- and the stage was set for what would become known as the Unix Wars. The good news was that software developers anywhere could get the Unix source code and tailor it to their needs and whims. The bad news was they did just that. Unix proliferated, and the variants diverged.

In 1982, Joy co-founded Sun Microsystems and offered a workstation, the Sun-1, running a version of BSD called SunOS. (Solaris would come about a decade later.) The following year, AT&T released the first version of Unix System V, an enormously influential operating system that would become the basis for IBM's AIX and Hewlett-Packard's HP-UX.

In the mid-'80s, users, including the federal government, complained that while Unix was in theory a single, portable operating system, in fact it was anything but. Vendors paid lip service to the complaint but worked night and day to lock in customers with custom Unix features and APIs.

1 2 Page 1
Page 1 of 2
The 10 most powerful companies in enterprise networking 2022